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Generation of sound and instability waves due to
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This paper analyses the generation of sound and Tollmien–Schlichting (T–S) waves
in a compressible boundary layer that is subject to unsteady suction and injection.
An asymptotic approach based on the triple-deck formulation has been developed
to calculate the sound field. It is shown that in addition to the three familiar
asymptotic regions that govern the near-field hydrodynamic motion, an extra outer
region controlling the sound radiation must be introduced. The near-field solution
is sought via an asymptotic expansion in ascending powers of ε = R−1/8, where R
is the global Reynolds number. The first three terms in the asymptotic series are
found to act as quadrupole, dipole and monopole sources respectively, and make
equal order-of-magnitude contributions to the acoustic far field. The analysis also
allows the amplitude of the excited T–S waves to be determined to O(ε) accuracy.
It is believed that the flow structure and solution procedure may be used to solve a
range of aeroacoustic problems.

1. Introduction
The present study is concerned with the two important processes that take place

simultaneously when a subsonic compressible boundary layer is subject to time-
periodic suction and injection, namely generation of instability, i.e. Tollmien–
Schlichting (T–S) waves, and radiation of sound to the far field. This problem
will be used as a prototype flow to develop an asymptotic procedure for calculating
the sound radiation in a shear flow, and to clarify the role of instability waves in
sound generation. The problem itself is of practical relevance since unsteady suc-
tion/injection has been used as an actuator in some laminar-flow control techniques
(such as micro-electro-mechanical devices), where a suitable suction may excite T–S
waves to cancel the oncoming naturally occurring T–S waves generated by the free-
stream turbulence. Such unsteady suction/injection is often referred to as a synthetic
jet in the field of flow control. For brevity, in the rest of the paper we shall omit
‘injection’ on the understanding that the suction velocity can be both positive and
negative.

Usually the streamwise extent of suction is fairly localized and in no case exceeds
the wavelength of the T–S waves. Thus in a suitable frequency range, the unsteady
suction alone is capable of directly exciting T–S waves, whose magnitude would be
proportional to the suction strength. The problem was first analysed by Gaster (1965)
and more recently by Ashpis & Reshotko (1990) on the basis of the Orr–Sommerfeld
equation, and formal solutions were given for the boundary-layer response. Terent’ev
(1981, 1984) formulated the same problem in the framework of triple-deck theory
and obtained the leading-order approximation to the T–S wave amplitude. Bodonyi
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& Duck (1992) investigated the control of T–S waves by unsteady suction over the
triple-deck scale. The same approach will be employed in the present study, but
we shall determine the amplitude of the T–S waves up to O(ε) accuracy. Clearly,
unsteady suction, being localized, generates T–S waves without involving a scale-
conversion mechanism. This is unlike the boundary-layer receptivity to the unsteady
disturbances in the free stream (i.e. the sound wave and convecting gust). Those
disturbances can excite T–S waves only through mutual interaction (Wu 1999) or
by interacting with certain rapidly varying streamwise inhomogeneities such as the
mean-flow distortion induced by a local roughness (Goldstein 1985; Ruban 1984;
Duck, Ruban & Zhikharev 1996). The magnitude of the excited T–S waves is thus
proportional to the product of those of the two participating agents.

The more important aim of our study is to present an asymptotic approach which
enables us to analyse, in a systematic and self-consistent manner, the sound radiation
due to a source that is embedded in a shear flow and possibly associated with viscous
motions. The effect of a mean shear flow on the sound radiation has long been an
outstanding issue (see e.g. Ffowcs Williams 1977), and for that reason has been a
subject of extensive study.

As is well known, the main theoretical tool for predicting the sound generated
by unsteady and often turbulent fluid motions has been the acoustic analogy theory
(Lighthill 1952). This theory is based on the fact that from the basic equations
governing the fluid motion, an inhomogeneous wave equation can be derived for the
density or pressure fluctuation. This equation is inherently nonlinear, but is in exact
analogy with the conventional acoustic equation if the inhomogeneous term, which
consists of the Reynolds as well as viscous stresses, is interpreted as the source acting
on a fictitious medium. Now if the velocity is decomposed into a sum of mean and
fluctuating parts, then the source will consist of the product of the mean-flow gradient
with the fluctuation as well as the product of the fluctuation with itself. The role of
the former term in sound generation was first considered by Lighthill (1954).

Subsequent investigations departed somewhat from Lighthill’s thinking in that some
of what he regarded as source terms were now viewed as describing the propagation
of the sound and hence were moved to the left-hand side of the equation. This
was the main idea underlining the formulation of more complex acoustic analogies
(Phillips 1960; Lilley 1974; Howe 1975) which display explicitly the so-called sound–
flow interaction, such as the convection and refraction effects. By rearranging the
fundamental equations of fluid motion in different ways, each of these authors
derived an equation for a quantity that represents the sound. In exact form, they are
nonlinear, and so have to be linearized before meaningful calculations can be carried
out.

Lilley’s analogy has received considerable attention. In this approach, the inhom-
ogeneous compressible Rayleigh equation, which is commonly referred to as Lilley’s
equation, takes the place of the wave equation in Lighthill’s original theory. Thus
Lilley’s equation has the unique property that in the absence of any volume source,
it describes the propagation of an infinitesimal sound wave through the mean flow.
But whether or not this property makes Lilley’s approach superior to other analogies
has been a matter of debate, and indeed several objections to Lilley’s approach have
been raised (see e.g. Howe 1975; Ffowcs Williams 1977; Crighton 1981). On the other
hand, Mani (1976) gave forceful arguments in favour of Lilley’s equation. Analytical
solutions to Lilley’s equation are possible only for special profiles such as a plug-flow
(i.e. vortex sheet) model, and these were worked out by Mani (1976). A justification for
using the vortex-sheet model was provided by Ffowcs Williams (1974) and Dowling,
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Ffowcs Williams & Goldstein (1978), who established an exact analogy between this
idealized model and the real problem. For an arbitrary mean-flow profile, Lilley’s
equation has to be solved numerically, and a recent calculation is that of Tam (1998).
At the low- and high-frequency limits, asymptotic solutions are possible and have
been obtained by a number of authors. A review of these results can be found in
Goldstein (1976, 1984a). Detailed comparisons with experiments on jet noise, such
as were presented in Mani (1976) and Goldstein (1976, 1984a), indicate that Lilley’s
approach is able to capture many radiation features which are beyond the scope of
Lighthill’s classical theory. However, the mean-flow effect on the sound emission can
be explicitly interpreted only when one assumes that the source is independent of the
mean flow. Obviously this assumption cannot be true in most applications (e.g. the
jet noise), where the acoustic source draws energy from the background shear flow.

The theories based on the idea of acoustic analogy have achieved considerable
success. However they have a fundamental weakness, that is, the very entity of
concern, the sound, is not defined in manner independent of the specific analogy.
Rather, sound is taken to be some quantity which is put on the left-hand side of a
wave-like equation, while the terms on the right-hand side are viewed as its source.
This kind of distinction between sound and source is somewhat arbitrary, even
though the well accepted analogies were based on the best physical intuitions. This
arbitrariness of course does not matter at all as long as the analogy remains in the
exact form. However, before any acoustic analogy can be used to calculate the absolute
level of the sound, the source has to be evaluated in advance. That has to be done
approximately because to do it exactly amounts to solving the complete equations
governing the compressible flow. Then two questions arise: (a) how the source should
be approximated, and (b) in what sense the sound calculated by a particular analogy
is indeed an approximation to the true sound field. There have been no definitive
or general answers to the above questions. A well-used approximation, advocated by
Lighthill himself, is to solve the incompressible flow in a limited spatial domain. It
was suggested that this scheme is valid for low-speed flows. A natural step to put it
on a formal and quantitative basis is by systematic small-Mach-number asymptotic
expansions. Such an attempt was made by Crow (1970) and Obermeier (1967). They
found that the small-Mach-number assumption alone is insufficient for justifying
Lighthill’s approximation; for the latter to be valid the unsteady flow has to satisfy
certain stringent conditions.

The work of Crow (1970) and Obermeier (1967) stimulated the development of the
alternative approach to aeroacoustics based on the method of matched asymptotic
expansion. The principal idea of this theory is as follows. Suppose that the sound is
emitted by the motion of vortices, of size lv say, contained in a domain of size L ∼ lv .
If the typical velocity of the vortex motion is u, then its timescale is lv/u and the
emitted sound has the wavelength λa ∼ a(lv/u), where a is the sound speed. In the
small Mach number limit M = u/a� 1, λa � lv , and two distinct asymptotic regions
emerge: a hydrodynamic near field on the scale lv , where the flow is incompressible
to the leading-order approximation, and an acoustic far field on the scale λa, through
which the energy leaked from the hydrodynamic motion propagates in the form of
sound. This approach is particularly suited for calculating the acoustic radiation due
to certain vortex motions, and a review of the work in this field was given by Kambe
(1986), but the general idea has much wider applications in acoustics (Crighton
1972a, b; Crighton & Leppington 1971, 1973).

It is apparent that the asymptotic approach overcomes, at least for the problems that
it can tackle, the inherent weakness of the acoustic analogy theory. First, the sound
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is defined as the far field of the hydrodynamic motion. This unambiguous definition
comes about mathematically, but is completely appropriate from the physical point
of view. Secondly, the source is calculated explicitly, or at any rate the way in which
it has been approximated is fully specified. In such an asymptotic approach, the
determination of the unsteady flow that radiates the sound is a natural and integral
part of the acoustic problem.

The asymptotic approach therefore appears to be a promising tool for studying
the sound radiation due to a source surrounded by a shear flow. It is of course
unrealistic at present to formulate a general theory. Instead, we shall focus on the
situation where the unsteady source flow is governed by triple-deck structure. The
particular problem that we choose, the subsonic compressible boundary layer subject
to periodic suction, is perhaps the simplest of the kind. Mathematically, the problem
has the advantage that it can be described and solved in a completely self-consistent
manner by using the high-Reynolds-number asymptotic approach. There is no need
to make any ad-hoc assumption. The problem has a number of novel aspects. First,
all previous asymptotic theories of acoustic radiation almost invariably assume that
the flow is nearly incompressible, i.e. the relevant Mach number is small. Such an
assumption is not necessary for our problem, with the result that compressibility
appears as a leading-order effect in the hydrodynamic near field. Secondly, the flow
supports instability waves, which will eventually dominate the flow field sufficiently
far downstream. But this leads to no indeterminacy since the amplitude of these waves
is fully determined by the given conditions.

The rest of the paper is structured as follows. In § 2, the problem is formulated, and
the relevant scalings are specified so that the boundary-layer response to the suction
can be described by triple-deck theory. The linearized solution, which is possible when
the suction velocity is less than O(R−3/8), is sought in § 3, where R is the Reynolds
number based on the distance of the suction from the leading edge. The solution in
each deck can be expanded in ascending powers of R−1/8, and the first three terms
in the expansion are obtained. In § 4, the amplitude of the T–S wave is calculated to
O(ε) accuracy. To determine the sound field, we examine in § 5.1 the large-distance
asymptotic behaviour of the pressure in the upper layer. It is found that the first
three terms in the solution contribute quadrupole, dipole and monopole sources
respectively to the sound generation, indicating that the expansion in the upper layer
becomes disordered in the far field. The pressure in this region, considered in § 5.2, is
governed by the conventional acoustic equation in a uniformly moving medium, and
its solution can be represented by a linear superposition of quadrupole, dipole and
monopole, with the combination coefficients being determined by matching with the
solution in the upper deck. The directivity of the radiated sound is examined. Further
discussions are given in § 6.

2. Formulation and scalings
We consider the two-dimensional compressible boundary layer over a semi-infinite

plate, which is subject to a localized suction at a distance l downstream the leading
edge. The oncoming flow is assumed to be uniform with velocity U∞. The mean
density, temperature, viscosity and sound speed in the free stream are denoted by ρ∞,
T∞, µ∞ and a∞ respectively. We define the Mach number

M = U∞/a∞,
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and the Reynolds number

R = U∞l/ν∞, (2.1)

where ν∞ = µ∞/ρ∞ is the kinematic viscosity. We shall focus on the subsonic flow
with M < 1 being of O(1). The Reynolds number is taken to be large.

The flow is to be described in a Cartesian coordinate system (x1, x2) whose origin
is taken to be at the distance l from the leading edge, where x1 and x2 are along and
normal to the plate, non-dimensionalized by l. The time variable t is normalized by
l/U∞. The velocity (u, v), density ρ, and temperature τ are non-dimensionalized by
U∞, ρ∞ and T∞ respectively, while the non-dimensional pressure p is introduced
by writing the dimensional pressure as p∞ + ρ∞U2∞p, where p∞ is a constant.

For simplicity, the fluid is taken to be a perfect gas, with a constant ratio of specific
heats, γ. The governing equations of the flow are

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.2)

ρ
Du

Dt
= −∇p+

1

R
∇ · (2µe) +

1

R
∇ ((µ′ − 2

3
µ)∇ · u) , (2.3)

ρ
Dτ

Dt
= (γ − 1)M2 Dp

Dt
+

1

PrR
∇ · (µ∇τ) +

(γ − 1)M2

R
Φ, (2.4)

1 + γM2p = ρτ, (2.5)

where u = (u, v), e and Φ represent the tensor of the strain rate and the dissipation
function:

eij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
, Φ = 2µe : e + (µ′ − 2

3
µ)(∇ · u)2

and Pr is the Prandtl number. The operators such as ∇ are defined with respect to
the variables (x1, x2). The shear viscosity µ is assumed to obey the Chapman viscosity
law,

µ = Cτ

where C is unity for the normalization adopted above, and so will drop out of
the equations hereafter. The bulk viscosity µ′ will play no role to the order of
approximation (and is usually taken to be zero by Stokes’ hypothesis).

Let us now define a boundary-layer variable y = R1/2x2 and write x1 as x, i.e.

(x, y) = (x1, R
1/2x2).

The velocity profile of the unperturbed basic flow is given by

UB = f′(η), where η = [(1 + x)]−1/2

∫ y

0

RB dy,

with RB being the mean density profile and f satisfying the Blasius equation

f′′′(η) + 1
2
ff′(η) = 0.

As y → 0,

UB(y)→ λ(Tw/T∞)−1y + 1
6
(γ − 1)M2λ3(Tw/T∞)−4y3 + O(y4),

where Tw is dimensional temperature at the wall, and the local skin friction

λ = λ0(1 + x)−1/2 with λ0 ≈ 0.3321. (2.6)
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We shall assume that the wall is adiabatic and the Prandtl number Pr is unity. The
temperature profile, TB(y), is then related to UB(y) via

TB = 1 + 1
2
(γ − 1)M2(1−U2

B).

Since TBRB = 1, it follows that

RB → (Tw/T∞)−1 + 1
2
(γ − 1)M2λ2(Tw/T∞)−4y2 + O(y3).

It is worth mentioning that the analysis in the present paper can be easily gener-
alized to a general viscosity law and an arbitrary Prandtl number. The assumptions
of the Chapman law and unity Prandtl number are made simply to avoid some
unnecessary complications which would otherwise be a distraction from the main
issue.

Since the suction is periodic in time, we may write the total velocity field as a sum
of the steady Blasius flow and a time-harmonic unsteady flow

(u, v, p, ρ, τ) = (UB, R
−1/2VB, 0, RB, TB) + (ũ, ṽ, p̃, ρ̃, τ̃)e−iωst + c.c., (2.7)

with ωs being the frequency of the suction. We are interested in the case where
the suction velocity is small so that substitution of (2.7) into (2.2)–(2.5) yields the
linearized Navier–Stokes equations, which to the required order of approximation can
be written as

−iωsρ̃+UBρ̃x + RBũx + ε−4(RBṽy + RB,yṽ) = 0, (2.8)

RB{−iωsũ+UBũx + ε−4UB,yṽ} = −p̃x + (TBũy)y + (UB,yτ̃)y, (2.9)

RB{−iωsṽ +UBṽx} = −ε−4p̃y + (TBṽy)y, (2.10)

RB{−iωsτ̃+UBτ̃x + ε−4TB,yṽ} = (γ − 1)M2{−iωsp̃+UBp̃x}
+ (TBτ̃y)y + 2(γ − 1)M2(TB)UB,yũy, (2.11)

γM2p̃ = TBρ̃+ RBτ̃, (2.12)

where we have defined the small parameter

ε = R−1/8.

In (2.8)–(2.11), we have ignored (a) the terms involving VB or the streamwise deriva-
tives of the mean-flow quantities (such as UB,x, TB,x etc.), (b) the momentum and
temperature diffusion in the streamwise direction, and (c) all the terms in the dissi-
pation function except the leading-order one. The temperature perturbation τ̃ can be
eliminated among (2.8), (2.11) and (2.12) to give

(−iωsρ̃+UBρ̃x) + ε−4RB,yṽ = RBM
2(−iωsp̃+UBp̃x) + T 2

Bρ̃yy − 2(γ − 1)M2UB,yũy.

(2.13)

Equation (2.9) can be rewritten, on replacing τ̃ using the state equation (2.12), as

RB{−iωsũ+UBũx + ε−4UB,yṽ} = −p̃x + (TBũy)y +
(
UB,yTB(γM2p̃− TBρ̃)

)
y
. (2.14)

Equations (2.8), (2.10), (2.13) and (2.14) form the system governing the four quantities
(ũ, ṽ, p̃, ρ̃). It is subject to the boundary condition at the wall:

ũ = 0, ṽ = ṽs(x) at y = 0.
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Figure 1. A sketch of the flow structure illustrating the radiation and receptivity processes.

To study the generation of T–S waves and the acoustic radiation, we shall perform
an asymptotic analysis based on the triple-deck formalism. For this approach to be
applicable, the frequency and the streamwise extent of the suction are assumed to be
of O(R2/8) and O(R−3/8) respectively. For a linearized analysis to be valid, we must
assume that

vs � O(R−3/8).

As far as calculating the sound at the fundamental frequency ωs is concerned, the
above condition is sufficient. However, nonlinear interaction generates harmonics,
and so there may be radiation at frequencies 2ωs, 3ωs, etc. An interesting question
is whether the sound with these tones can be as strong as the fundamental for some
moderate-sized vs. This issue is worth further investigation, but the sound at the
harmonics is definitely negligible if vs � R−5/8, for which no harmonics appear in the
expansion (2.7) to the required order.

It is convenient to introduce the faster time and spatial variables

t̄ = ε−2K−1t, x̄ = ε−3K−1x, (2.15)

and write

ωs = ε−2K−1ω, ṽs = ε3(Tw/T∞)1/2Vs(x̄).

where K = (Tw/T∞)3/2, and suitable renormalizations have been included for later
convenience.

The unsteady flow is described by the standard triple-deck structure consisting of
the lower, middle and upper decks. These three regions as a whole will be referred
to as the hydrodynamic near field. It turns out that the expansion in the upper
deck is not uniformly valid. An acoustic outer region with both the streamwise and
transverse scales being O(R−1/4) has to be introduced to describe the conversion of
the hydrodynamic motion into the sound. The whole flow structure thus consists of
four decks, as is illustrated in figure 1. Note that for M = O(1) the sound has a
wavelength of O(R−1/4), which is much larger than the O(R−3/8) size of the source,
and so the source is always compact regardless of the Mach number; there is no need
to assume the Mach number to be small.

Strictly speaking, the governing equations have coefficients that vary with x. Fortu-
nately, under the condition that R � O(1) such an x-variation is purely parametric,
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and in fact is so slow that its effect does not appear to the required order of approxi-
mation in this study. The equations can be solved by taking the Fourier transform

with respect to x̄. Let V̂s(k) denote the Fourier transform of Vs(x̄). Then

V̂s(k) =
1

(2π)1/2

∫ ∞
−∞
Vs(x̄)e−ikx̄ dx̄.

In the following, (û, v̂, p̂, ρ̂) will stand for the Fourier transform of (ũ, ṽ, p̃, ρ̃). Through-
out § 3.1–§ 3.3, expansions in each deck will be given for (û, v̂, p̂, ρ̂). The inversion
contour in the k-plane will be chosen to ensure that the solution is causal.

3. Triple-deck solution
In this section, we consider the solutions in each of the three decks. These solutions

must be obtained up to O(ε2) accuracy even for the purpose of determining the leading-
order acoustic radiation in the far field. The reason is that the near-field solutions at
the first three consecutive orders are such that they represent the quadrupole, dipole
and monopole respectively, which turn out to make an equal order-of-magnitude
contribution to the far field acoustic radiation.

3.1. The main deck

In the main deck, it is convenient to use renormalized variable

ỹ = (Tw/T∞)−1y.

The Fourier transform of the unsteady flow has the expansion

û = ε(Tw/T∞)1/2[U1 + εU2 + ε2U3 + · · ·], (3.1)

v̂ = ε2[V1 + εV2 + ε2V3 + · · ·], (3.2)

ρ̂ = ε(Tw/T∞)1/2[R1 + εR2 + ε2R3 + · · ·], (3.3)

p̂ = ε2[P1 + εP2 + ε2P3 + · · ·]. (3.4)

For the purpose of calculating the sound, there is no need to go beyond the present
three-term expansion, and the reason for this will be given at the end of § 5.1.

The leading-order terms satisfy the familiar main-deck equations, and have the
well-known solution (e.g. Stewartson 1974)

U1 = A1U
′
B, V1 = −ikA1UB, R1 = A1R

′
B, (3.5)

where A1 is a function of k to be determined by matching, and the prime denotes the
derivative with respect to ỹ.

The O(R−1/8) correction terms, U2, V2 etc., are governed by

ik(RBU2 +UBR2) +
∂

∂ỹ
(RBV2) = iωR1, (3.6)

RB(ikUBU2 +U ′BV2) = iωRBU1 − ΩikP1, (3.7)

ikUBR2 + R′BV2 = iωR1 + ΩikP1M
2RBUB, (3.8)

ikΩRBUBV1 = −P2,ỹ , (3.9)

where Ω = (Tw/T∞)−1/2. On eliminating U2 and R2 among (3.6)–(3.8), it can be shown
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that

RB(UBV
′
2 −U ′BV2) = ΩikP1(1−M2RBU

2
B)− iωA1RBU

′
B. (3.10)

After inserting in (3.5), equation (3.10) is solved to give

V2 = −ikA2UB + iωA1 + ΩikP1UB

∫ ỹ ( 1

RBU
2
B

−M2

)
dỹ, (3.11)

while (3.9) gives

P2 = P̃2 − k2A1(k)Ω

∫ ỹ

0

RBU
2
B dỹ, (3.12)

where A2 and P̃2 are functions of k to be found later. It is easy to show that as ỹ →∞
V2 → Ω(ikP1)(1−M2)ỹ + (−ikA2 + iωA1 + ΩikP1J∞) + · · · ,
P2 → (−Ωk2A1)ỹ + (P̃2 − Ωk2A1I2) + · · · ,

}
(3.13)

where J∞ and I2 are defined respectively by (A 4) and (A 2) in the Appendix. On the
other hand, as ỹ → 0,

V2 → iωA1 − Ω(Tw/T∞)λ−1ikP1 + (−ikλA2 + ΩikP1λJ0) ỹ + · · · ,
with J0 being given by (A 3).

The governing equations for U3 and V3 are

ik(RBU3 +UBR3) +
∂

∂ỹ
(RBV3) = iωR2, (3.14)

RB(ikUBU3 +U ′BV3) = iωRBU2 − ΩikP2, (3.15)

ikUBR3 + R′BV3 = iωR2 + ΩM2RB(ikP2UB − iωP1), (3.16)

ΩRB(−iωV1 + ikUBV2) = −P3,ỹ . (3.17)

These equations can be solved to give

V3 = −ikA3UB + iωA2 + Ω(ikP̃2)UB

∫ ỹ ( 1

RBU
2
B

−M2

)
dỹ

−Ω2(ik3)A1UB

∫ ỹ

0

(
1

RBU
2
B

−M2

)∫ ỹ2

0

RBU
2
B dỹ1 dỹ2

+Ω(iωP1)UB

{
2

∫ ỹ 1

RBU
3
B

dỹ − 1

UB

∫ ỹ ( 1

RBU
2
B

−M2

)
dỹ

}
, (3.18)

P3 = P̃3 + Ω

{
2ωkA1

∫ ỹ

0

RBUBdỹ − k2A2

∫ ỹ

0

RBU
2
B dỹ

+Ωk2P1

∫ ỹ

0

RBU
2
B

∫ ỹ2
(

1

RBU
2
B

−M2

)
dỹ1dỹ2

}
, (3.19)

where A3 and P̃3 are functions of k to be determined. It can be shown that as ỹ →∞
V3 → − 1

2
(1−M2)Ω2ik3A1ỹ

2 + {−Ω2ik3(1−M2)I2A1 + Ωiω(1 +M2)P1}ỹ
+{ΩikP̃2J∞ + ΩiωP1H

∞
6 − Ω2ik3A1H5 − ikA3 + iωA2}+ · · · , (3.20)
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P3 → 1
2
(1−M2)Ω2k2P1ỹ

2 + Ω{2ωkA1 − k2A2 + Ωk2P1J∞}ỹ
+Ω{2ωkA1I1 − k2A2I2 + Ωk2P1H3}+ · · · , (3.21)

where H∞6 , H5, I1 and H3 are defined by (A 7), (A 6), (A 1) and (A 5) respectively.
Elimination of R3 between equations (3.14) and (3.16) yields

ikU3 + V ′3 = −ΩM2ikP2UB + ΩM2iωP1,

using which, together with (3.18), we find that as ỹ → 0

U3 ∼ 2Ω(γ − 1)M2ωP1

k
ln ỹ + λA3 + Ω

{
−λJ0P̃2 − ωλ

k
H

(0)
6 P1

}
, (3.22)

with H (0)
6 being given by (A 8).

3.2. The upper-deck solution

In the upper deck, the transverse variable ȳ is defined as

ȳ = K−1(εy) = (Tw/T∞)−1/2(εỹ), (3.23)

and the Fourier transform of the solution for the unsteady flow expands as

v̂ = ε2(v̄1 + εv̄2 + ε2v̄3 + · · ·), (3.24)

p̂ = ε2(p̄1 + εp̄2 + ε2p̄3 + · · ·). (3.25)

The governing equations for p̄1 and v̄1 are{
∂2

∂ȳ2
− (1−M2)k2

}
p̄1 = 0, ikv̄1 = −p̄1,ȳ ,

which have the solution

p̄1 = P1 e−κ̄ȳ , v̄1 =
κ̄

ik
P1 e−κ̄ȳ , (3.26)

where

κ̄ = (1−M2)1/2[(k + i0)(k − i0)]1/2; (3.27)

here (k ± i0) indicates that a small positive/negative quantity has been added to k,
and the branch cuts of (k ± i0)1/2 are taken to be in the lower/upper half-planes.
Matching v̄1 with the main-deck solution V1 in (3.5) gives

P1 = k2/κ̄A1. (3.28)

The governing equations for p̄2 and v̄2 in (3.24)–(3.25) are{
∂2

∂ȳ2
− (1−M2)k2

}
p̄2 = 2M2ωkp̄1, ikv̄2 − iωv̄1 = −p̄2,ȳ .

The solution for p̄2 is

p̄2 = P̄2 e−κ̄ȳ − M2ωk

κ̄
P1ȳ e−κ̄ȳ , (3.29)

where P̄2 is an arbitrary function of k. It follows from substituting p̄2 into the equation
for v̄2, that as ȳ → 0

v̄2 → κ̄

ik
P̄2 − iω

κ̄
P1.
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The matching requirements for the pressure and vertical velocity with their main-deck
counterparts lead to

P̄2 = P̃2 − Ωk2A1I2, (3.30)

κ̄

ik
P̄2 − iω

κ̄
P1 = −ikA2 + iωA1 + Ω(ikP1)J∞. (3.31)

The functions p̄3 and v̄3 satisfy{
∂2

∂ȳ2
− (1−M2)k2

}
p̄3 = 2M2ωkp̄2 −M2ω2p̄1, ikv̄3 − iωv̄2 = −p̄3,ȳ . (3.32)

The solution for p̄3 is found to be

p̄3 = P̄3 e−κ̄ȳ +
M4ω2

2(1−M2)
P1ȳ

2 e−κ̄ȳ +

{
M2ω2P1

2(1−M2)κ̄
− M2ωkP̄2

κ̄

}
ȳ e−κ̄ȳ . (3.33)

It follows from (3.32) that as ȳ → 0

v̄3 → κ̄

ik
P̄3 − iω

κ̄
P̄2 − iω2P1

κ̄k

[
1− M2

2(1−M2)

]
.

Matching the pressure p̄3 and the vertical velocity v̄3 with their respective counterparts
in the main deck yields

P̄3 = P̃3 + Ω{2ωkA1I1 − k2A2I2 + Ωk2P1H3}, (3.34)

κ̄

ik
P̄3 − iω

κ̄
P̄2 − iω2P1

κ̄k

[
1− M2

2(1−M2)

]
= ΩikP̃2J∞ + ΩiωP1H

∞
6 − Ω2ik3A1H5 − ikA3 + iωA2. (3.35)

3.3. The lower-deck solution

The local transverse variable for the lower deck is

Y = ε−1(Tw/T∞)−3/2y = ε−1(Tw/T∞)−1/2ỹ,

and the Fourier transform of the unsteady field has the expansion

û = ε(Tw/T∞)1/2
[
Ũ1 + εŨ2 + ε2Ũ3 + · · ·] , (3.36)

v̂ = ε3(Tw/T∞)1/2
[
Ṽ1 + εṼ2 + ε2Ṽ3 + · · ·] , (3.37)

p̂ = ε2
[
P1 + εP̃2 + ε2P̃3 + · · ·] , (3.38)

ρ̂ = ε2(Tw/T∞)−1
[
R1 + εR2 + ε2R3 + · · ·] . (3.39)

The leading-order terms satisfy the linearized boundary-layer equations

ikŨ1 + Ṽ1,Y = 0, (3.40)

i(kλY − ω̂)Ũ1 + λṼ1 = −ikP1 + Ũ1,Y Y , (3.41)

where ω̂ = ω(Tw/T∞)−1/2. The above system is subject to the matching condition
with the main deck:

Ũ1 → λA1 as Y →∞, (3.42)
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and the boundary condition on the wall: Ũ1 = 0, Ṽ1 = V̂s at Y = 0. The latter implies
that

Ũ1,Y Y (0) = λV̂s + ikP1 (3.43)

after setting Y = 0 in (3.41). By eliminating the pressure from (3.40)–(3.41), it can be
shown that Ũ1 satisfies {

∂2

∂Y 2
− i(kλY − ω̂)

}
Ũ1,Y = 0. (3.44)

The solution is

Ũ1 = C1(k)

∫ ζ

ζ0

Ai(ζ) dζ, (3.45)

where C1(k) is to be found, Ai denotes the Airy function, and

ζ = (ikλ)1/3Y + ζ0, ζ0 = −iω̂(ikλ)−2/3. (3.46)

Application of (3.42) and (3.43) together with (3.46) gives

C1(k)

∫ ∞
ζ0

Ai(ζ) dζ = λA1, (3.47)

(ikλ)2/3C1(k)Ai′(ζ0) = λV̂s + ikP1. (3.48)

Eliminating A1 and C1(k) from (3.28), (3.47) and (3.48), we obtain

P1 =
iλV̂s(k)

k∆(k)

∫ ∞
ζ0

Ai(ζ) dζ, (3.49)

where

∆(k) =

∫ ∞
ζ0

Ai(ζ) dζ + iλ(ikλ)2/3Ai′(ζ0)
κ̄

k3
. (3.50)

Consider now the terms Ũ2 and Ṽ2 in the expansion (3.36)–(3.38). They are governed
by the same equations as Ũ1 and Ṽ1, but satisfy the boundary conditions at the wall,
Ũ2 = Ṽ2 = 0 at Y = 0, which are equivalent to

Ũ2 = 0, Ũ2,Y Y = ikP̃2 at Y = 0. (3.51)

The solution satisfying the first of the above conditions is

Ũ2 = C2(k)

∫ ζ

ζ0

Ai(ζ) dζ, (3.52)

where C2(k) is a function of k. Application of the second condition in (3.51) gives

(ikλ)2/3C2Ai′(ζ0) = ikP̃2, (3.53)

while matching Ũ2 with its counterpart in the main deck leads to

C2

∫ ∞
ζ0

Ai(ζ) dζ = −ΩP1λJ0 + λA2. (3.54)

After eliminating A2 and P̃2 from (3.30)–(3.31) and (3.53)–(3.54), we find that

P̄2 = − (ikλ)2/3λAi′(ζ0)

k2∆(k)

{
ω(2−M2)

kκ̄
+ Ω

[
J∞ − J0 − (1−M2)I2

]}
(ikP1)− ΩI2κ̄P1.

(3.55)
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The terms Ũ3, Ṽ3 etc., in (3.36)–(3.38) are governed by the equations

ikŨ3 + Ṽ3,Y = −Ω3Y Ṽ1 + (iω̂ − ikλY )R1, (3.56)

i(kλY − ω̂)Ũ3 + λṼ3 = −ikP̃3 + Ũ3,Y Y + 1
2
Ω3(Y

2(ikP1)− 2Y 2Ũ1,Y Y − 2Y Ũ1,Y )

−Ω3(
1
6
λY 3ikŨ1 + 1

2
λY 2Ṽ1)− λR1,Y , (3.57)

R1,Y Y + i(ω̂ − kλY )R1 = Ω3λ
−1(λY Ṽ1 + 2Ũ1,Y ) +M2(iω̂ − ikλY )P1, (3.58)

where Ω3 = (γ − 1)M2λ2. After eliminating P̃3 from (3.56)–(3.58), we find{
∂2

∂Y 2
− i(kλY − ω̂)

}
Ũ3,Y

= Ω3{Y (iω̂ − ikλY )Ũ1 + 2Y (−ikP1) + Y 2Ũ1,Y Y Y + 4Y Ũ1,Y Y + 3Ũ1,Y

+ 1
6
Y 3(ikλ)Ũ1,Y }+M2λ(iω̂ − ikλY )P1. (3.59)

In order to express the solution in a form that is convenient for evaluating its large-Y
asymptote, we write

Ũ3 =
(
2λ−1Ω3 +M2λ

)
P1Y + Ω3

∫ Y

0

Y Ũ1 dY + Ω3W̃3. (3.60)

Then W̃3 satisfies

W̃3,ζζζ − ζW̃3,ζ = (ikλ)−2/3{ 1
6
(ζ − ζ0)

3Ũ1,ζ + (ζ − ζ0)
2Ũ1,ζζζ + 3(ζ − ζ0)Ũ1,ζζ + Ũ1,ζ}
−2λ−1(ikλ)−1(iω̂)P1. (3.61)

We find that

W̃3,ζ = (ikλ)−2/3{ 1
6
(ζ−ζ0)

3Ũ1,ζζ+( 1
2
ζ2−ζ0ζ)Ũ1,ζ}+C3(k)Ai(ζ)− 2ω̂

λ2k
P1M(ζ, ζ0), (3.62)

where C3 is a function of k, and

M(ζ, ζ0) = π

{
Bi(ζ)

∫ ζ

∞
Ai(ζ) dζ −Ai(ζ)

∫ ζ

ζ0

Ai(ζ) dζ

}
,

with Bi being the second Airy function. Integrating (3.62) once and inserting it into
(3.60) gives Ũ3. Matching Ũ3 with the main-deck solution (3.22), we obtain

−Ω
{
λJ0P̃2 +

ωλ

k
H

(0)
6 P1

}
+ λA3 = −(ikλ)−2/3Ω3Λ∞ + C3(k)

∫ ζ

ζ0

Ai(ζ) dζ, (3.63)

where

Λ∞ = ζ2
0λA1 + 1

2
{ζ0Ũ1,ζζ(ζ0) + Ũ1,ζ(ζ0)}

+2λ−1ζ0(ikλ)
1/3P1

{∫ ∞
ζ0

{
M(ζ, ζ0) +

1

ζ

}
dζ + ln

(
(Tw/T∞)1/2ζ0(ikλ)

1/3
)}

.

The boundary condition at the wall yields

−Ω3Λ0 + (ikλ)2/3C3(k)Ai′(ζ0) = ikP̃3, (3.64)
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with

Λ0 = 1
2
ζ2

0Ũ1,ζζ(ζ0) + 2πλ−1ζ0(ikλ)
1/3P1Bi(ζ0)

∫ ∞
ζ0

Ai(ζ) dζ.

The solution for P̄3 can be found from (3.34)–(3.35), (3.63) and (3.64),

P̄3 = − iAi′(ζ0)

k∆(k)
Ω3

{
Λ∞ − Λ0

∫ ∞
ζ0

Ai(ζ) dζ/Ai′(ζ0)

}

+
(ikλ)2/3λAi′(ζ0)

k2∆(k)

{
− iωP̄2

κ̄
− iω2P1

kκ̄

[
1− M2

2(1−M2)

]
− iωA2 − Ωχ

}
+Ω

{
2ωkA1I1 − k2A2I2 + Ωk2P1H3

}
, (3.65)

where

χ = kκ̄A2I2 − k(P̄2 + ΩI2κ̄P1)(J∞ − J0)

−ω [H∞6 −H0
6 + 2(1−M2)I1

]
P1 + Ωkκ̄P1(H5 −H3).

4. Receptivity: the amplitude of T–S waves
The results in the previous section allow us to calculate the amplitude of the T–S

wave. The leading-order solution has already been given by Terent’ev (1981, 1984).
We now show how the T–S wave can be determined up to O(ε) accuracy.

To be specific, we consider the solution in the lower deck. The first two terms of
its Fourier transform are given by (3.45) and (3.52). Thus the solution in the physical
space, accurate up to O(ε), is given by

ũ =
1

(2π)1/2

∫ ∞
−∞

{
[C1(k) + εC2(k)]

∫ ζ

ζ0

Ai(ζ) dζ

}
ei(kx̄−ωt̄) dk + O(ε2). (4.1)

Here the function C1(k) is found from (3.28), (3.47) and (3.48),

C1(k) =
iλ2V̂s(k)κ̄

k3∆(k)
, (4.2)

while C2(k) is solved from (3.30)–(3.31) and (3.53)–(3.54),

C2(k) =
iλ2V̂s(k)

k∆2(k)

{
(2−M2)ω

kκ̄
+ Ω

(
J∞ − J0 − (1−M2)I2

)}∫ ∞
ζ0

Ai(ζ) dζ. (4.3)

The above expressions show that C1(k) and C2(k) have simple and double poles
respectively at k = α where α is any root of ∆, i.e.

∆(α) = 0. (4.4)

This equation is the leading-order dispersion relation of the T–S waves. It is known
that for a given real frequency ω̂, at most one root lies in the lower half-plane. The
integration contour that ensures the causality depends on the location of the roots. If
all the roots lie in the upper half-plane, the integration contour (4.1) can be taken to
be along the real axis. But if one of the roots is in the lower half-plane the contour
has to be deformed to lie below that root. In either case, the T–S wave corresponds
to 2πi times the residue of the integrand in (4.1) at k = α. We find that

ũTS = −(2π)
1
2
λ2V̂s(α)(1−M2)1/2

α2∆′(α)

{
ŨTS + ε(iαx̄)qc

∫ ζ

ζ0

Ai(ζ) dζ

}
ei(αx̄−ωt̄) , (4.5)
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where

ŨTS = (1 + εq∞)

∫ ζ

ζ0

Ai(ζ) dζ + ε 1
3
qc [(ζ − 3ζ0)Ai(ζ) + 2ζ0Ai(ζ0)] , (4.6)

q∞ =
1

(1−M2)1/2∆′(α)

{{(
αV̂ ′s (α)
V̂s(α)

− 1− α∆′′(α)
∆′(α)

)
Λ− 2(2−M2)ω

(1−M2)1/2α2

}

×
∫ ∞
ζ0

Ai(ζ) dζ + 2
3
Λζ0Ai(ζ0)

}
, (4.7)

qc =
Λ

(1−M2)1/2∆′(α)

∫ ∞
ζ0

Ai(ζ) dζ, (4.8)

with

Λ =
(2−M2)ω

(1−M2)1/2α2
+ Ω

(
J∞ − J0 − (1−M2)I2

)
. (4.9)

Due to its exponential growth, the T–S wave will eventually dominate the flow further
downstream. However, the presence of the secular term proportional to x̄ in (4.5)
implies that (4.5) is no longer valid when x̄ = O(R1/8). In order to interpret this term
properly and also to be precise about what the theory can predict, we must consider
the subsequent development of the T–S wave. In the second phase where x̄ � R1/8

or equivalently x� R−1/4, the T–S wave is governed by local parallel stability theory,
and its solution, the streamwise velocity in the lower deck say, takes the usual WKBJ
form

uTS = AIUTS (Y , x; ε) exp

{
iR3/8

∫ x

0

αTS (x) dx− iωt̄

}
, (4.10)

where the constant AI is the (unknown) amplitude of the T–S wave, and UTS is the
eigenfunction. The complex wavenumber αTS (x) has the expansion

αTS = α1(x) + εα2(x) + · · · ,
with α1, α2 etc., being determined by an analysis very similar to that in § 3. The
leading-order analysis immediately shows that α1 is a root of ∆(α1) = 0, with of
course λ now standing for the local wall shear, i.e. λ = 0.332(1 +x)−1/2. After carrying
on the analysis to the second order, we find that

α2 =
α2

1

(1−M2)1/2a

{
(2−M2)ω

(1−M2)1/2α2
1

+ Ω(J∞ − J0 − (1−M2)I2)

}∫ ∞
ζ0

Ai(ζ) dζ, (4.11)

where the constant a is defined by

a = 2
3
ζ0Ai(ζ0) + 2

∫ ∞
ζ0

Ai(ζ) dζ + 2
3
(1−M2)1/2 (iα1λ)

5/3

α3
1

{Ai′(ζ0)− ζ2
0Ai(ζ0)}. (4.12)

Obviously the dependence of α1 and α2 on the slow variable x is parametric. It follows
that as x→ 0, α1 → α, and

uTS ≈ AIUTS (Y , 0; ε) (1 + εiα2x̄) ei(αx̄−ωt̄ ). (4.13)

Matching the leading-order terms in (4.5) and (4.10) gives

uI ≡ AIUTS (Y , 0; ε) = −(2π)1/2 λ
2V̂s(α)(1−M2)1/2

α2∆′(α)
ŨTS . (4.14)
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It is easy to verify that a = α∆′(α), and then (4.8) and (4.11) show that α2 = αqc.
Therefore to the required order, the terms proportional to x̄ in (4.5) and (4.13) match
automatically. It now transpires that the secular term in (4.5) is associated with the
second-order correction to the dispersion relation of the T–S wave, while ŨTS given
by (4.6) is the T–S eigenfunction, accurate up to O(ε).

In experiments on localized receptivity such as the case studied here, one usually
has to measure the streamwise velocity of the T–S wave at some distance downstream,
where the wave has attained a sizeable magnitude. That velocity is then extrapolated
back to give the velocity at the location of forcing. As (4.10) indicates, the uI given by
(4.14) represents exactly this extrapolated velocity. It is worth noting that although
uI is often referred to as the initial streamwise velocity of the T–S wave, it is not the
physical velocity measured directly at the position of suction; the latter is far more
complex.

Equation (4.14) along with (4.6)–(4.9) determines the initial amplitude of the T–S
wave to O(ε) accuracy. These results represent an extension of the earlier result of
Terent’ev (1981, 1984). It would be straightforward to work out the T–S wave ampli-
tude to O(ε2), though a much more complex calculation is required. The procedure
given in this section has been applied, with some modifications, to construct a second-
order theory for the localized receptivity involving a vortical free-stream disturbance
interacting with a local roughness (Wu 2001b), where a quantitative comparison was
made with the experimental data of Dietz (1999). For the distributed receptivity, a
second-order theory was completed by the author (Wu 2001a). In both cases, good
agreement with experiments was obtained.

The Blasius profile and the Airy function Ai(η) are obtained by a shooting method
based on a fourth-order Runge–Kutta method. The various integrals are evaluated
using the Trapezoidal rule or Simpson’s rule wherever possible. The calculations are
performed for uniform suction, i.e.

Vs(x̄) =

{
V0 when |x̄| 6 D,
0 otherwise.

(4.15)

We define the coupling coefficient

Cp = uI/DV0 (4.16)

as a measure of the effectiveness of receptivity.
To comply with the practice in experiments, we normalize the dimensional frequency

of the T–S wave, ω∗s , as

F = ω∗s ν/U
2
∞ × 106,

which is related to ω̂ via

F = ω̂R−3/4(Tw/T∞)−1 × 106. (4.17)

The Reynolds number is fixed at R = 5× 105 for which ε ≈ 0.19.
Figure 2 shows Cp as a function of the frequency F for M = 0 and M = 0.8,

with the (physical) width of the suction slot being held constant: (Tw/T∞)3/2D = 4.
Both the first- and second-order results are included. As is illustrated, the receptivity
is strong at the low-frequency end, and weakens as F increases. If one takes into
account the subsequent development of the T–S wave, the most important frequency
probably is centred at the neutral one, i.e. Fn as marked in the figure. This is because
if the suction frequency is smaller than Fn, the T–S wave would decay before it
eventually amplifies. On the other hand if the suction frequency is higher than Fn,
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Figure 2. Variation of the coupling coefficient Cp with the suction frequency F for M = 0, 0.8. The
solid lines: the second-order theory; the dashed lines: the ‘first-order’ theory. The neutral frequencies
are marked by •.

0.40

0.35

0.30

0.25

0.20

0 1 2 3 4 5 6 7

Cp

M = 0

M = 0.8

D

0.15

8
˜

0.6

0

Figure 3. The variation of the coupling coefficient Cp with D̃ = (Tw/T∞)3/2D for M = 0, 0.8. For
each value of M, F is set to be the neutral frequency. The solid lines: the second-order theory; the
dashed line: the ‘first-order’ theory for M = 0.

the T–S wave actually loses part of the exponentially growing region. In the major
frequency range of interest (typically F < 60), the difference between first and second
order is about 20%. Discrepancy of this order is broadly in line with experimental
uncertainties. That the first- and second-order approximations are reasonably close
gives us confidence in the reliability of the asymptotic results. However, at the higher
frequency end, the difference could be more than 40%, in which case the theoretical
prediction should be treated with great caution. A further examination indicates
that the large discrepancy is due to the fact that the second-order correction to the
eigenfunction, i.e. the expression in the square brackets in (4.6), becomes considerably
larger than the leading-order approximation, the integral term in (4.6).

Figure 3 shows the variation of Cp with D̃ ≡ (Tw/T∞)3/2D for three typical Mach
numbers: M = 0, 0.6 and 0.8. For each value of M, the frequency F is taken to be the
corresponding neutral frequency Fn. Clearly, a narrow suction slot is more effective
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than a wide one, with the ‘point’ suction represented by the D → 0 limit being most
efficient. This limit is reached in practice when D̃ ≈ 2. For such a value, the width of
the suction is approximately 1/10 the T–S wavelength.

5. Sound radiation
5.1. The asymptotic behaviour of the pressure

The solution for the pressure fluctuation in the upper deck can be written as

p̃ = ε2
(
p̃1 + εp̃2 + ε2p̃3 + · · ·) , (5.1)

where p̃1, p̃2 and p̃3 are the Fourier inversions of p̄1, p̄2 and p̄3 respectively; see (3.26),
(3.29) and (3.33). For instance,

p̃1 =
1

(2π)1/2

∫ ∞
−∞
P̄1(k) eikx̄−κ̄ȳ dk. (5.2)

In order to calculate the acoustic radiation, it is necessary to know the asymptotic
behaviour of p̃ as x̄, ȳ → ∞. To that end, the integration path is now taken to be
along the real axis. This is allowed when all the roots of ∆ lie in the upper half-plane
since the real axis is a causal contour. The solution so obtained will differ from the
causal solution by 2πi times the residue of the integrand when there is a root in
the lower half-plane, but the latter part is exponentially small as ȳ → ∞. Therefore
in either case, deforming the causal contour to the real axis does not affect the
far-field behaviour of the solution. It now follows that κ̄ = |k|. Since the phase of
the integrand has no stationary point, the asymptotic behaviour of p̃ for large x̄,
ȳ is determined by the nature of the integrand in the region near k = 0, implying
that only small-wavenumber components of the near-field hydrodynamic motion are
radiated into the sound, and this also occurs in the problem considered by Goldstein
(1984b).

Note that ζ0 →∞ as k → 0. It can be shown that∫ ∞
ζ0

Ai(ζ) dζ/Ai′(ζ0) ∼ − 1

ζ0

(
1− ζ−3/2

0 + O(ζ0)
−3
)
. (5.3)

Using this result in (3.49), (3.55) and (3.65) shows that as k → 0

P̄1 ∼ P0|k|, P̄2 ∼ −ω(2−M2)P0

1−M2
sgn(k), P̄3 ∼ (2 +M2)ω2P0

2(1−M2)2
|k|−1, (5.4)

with

P0 = − iV̂s(0)

ω̂(1−M2)1/2
= −(Tw/T∞)1/2 iV̂s(0)

ω(1−M2)1/2
.

It then follows from Watson’s lemma that as r̄ = (x̄2 + ȳ2)1/2 →∞

p̃1 ∼ P0

2[−x̄2 + (1−M2)ȳ2]

[x̄2 + (1−M2)ȳ2]2
, (5.5)

p̃2 ∼ − (2−M2)ωP0

1−M2

2ix̄

x̄2 + (1−M2)ȳ2
−M2ωP0

4ix̄ȳ2

[x̄2 + (1−M2)ȳ2]2
. (5.6)

The third relation in (5.4) indicates that P̄3 should be understood as a generalized
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function. The asymptote of p̃3 is given by (see e.g. Lighthill 1964, p. 43),

p̃3 ∼ − (2 +M2)ω2P0

(1−M2)2
{ln(x̄2 + (1−M2)ȳ2) + C̃3}+

M4ω2P0

(1−M2)

ȳ2[−x̄2 + (1−M2)ȳ2]

[x̄2 + (1−M2)ȳ2]2

+
M2(5− 2M2)ω2P0

1−M2

ȳ2

x̄2 + (1−M2)ȳ2
, (5.7)

where C̃3 is an arbitrary constant; its appearance is merely a reflection of the fact
that the Laplace equation admits the solution p̃3 = constant (cf. Crow 1970).

The far-field asymptotes of p̃1, p̃2 and p̃3 indicate that they act respectively as
quadrupole, dipole and monopole sources for the sound radiation. Although the
latter two appear at higher orders in the upper deck, their contribution to the sound
in the far field is as important as that of p̃1. As was emphasized by Crighton (1992),
such subtleties reflect the very essence of aeroacoustics.

Since the third term p̃3 gives a monopole, which is an acoustic pole of the lowest
order possible, there is no need to go further than p̃3 (see e.g. Crow 1970; Crighton
1992). Mathematically, terms higher than p̃3 would have the far-field asymptotes like
x̄m log(x̄2+(1−M2)ȳ2) and ȳm log(x̄2+(1−M2)ȳ2) (m > 1). These seemingly unbounded
terms would automatically match to the ‘regular parts’ in the small-distance asymptote
of the acoustic solution.

5.2. The acoustic field

The asymptote of the pressure fluctuation in the upper deck implies that the expansion
ceases to be valid when x̄ = O(ε−1) and ȳ = O(ε−1). This suggests the introduction of
the variables

x† = εx̄, y† = εȳ

to describe the acoustic field. The key difference from the upper deck is that the
pressure fluctuation now satisfies the convected wave equation in a uniform stream,

M2

(
−iω +

∂

∂x†

)2

p̃−
(
∂2

∂x†2
+

∂2

∂y†2

)
p̃ = 0, (5.8)

with the boundary condition that p̃ → 0 as r† ≡ (x†2 + y†2)1/2 → ∞. A solution can
be sought of the form

p̃ =
ε4

√
2π
p†(x̂, ŷ)e−iMx̂, (5.9)

where

x̂ =
Mω

1−M2
x†, ŷ =

Mω

(1−M2)1/2
y† (5.10)

are renormalized coordinates. In terms of (x̂, ŷ), the governing equation for p† reduces
to the Helmholtz equation (

∂2

∂x̂2
+

∂2

∂ŷ2

)
p† + p† = 0,

so that we may express p† as a superposition of multipoles:

p† =

{
q11

∂2

∂x̂2
+ q12

∂2

∂x̂ŷ
+ q22

∂2

∂ŷ2
+ d1

∂

∂x̂
+ d2

∂

∂ŷ
+ m

}
H

(1)
0 (r̂), (5.11)
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where H (1)
0 denotes the Hankel function, and r̂ = (x̂2 + ŷ2)1/2. We may take m = 0

without losing generality since H (1)
0 (r̂) = −(∂2/∂x̂2 + ∂2/∂ŷ2)H (1)

0 (r̂). The remaining
constants, q11, q12, q22, d1 and d2, can be determined by matching with the upper-deck
solution. To that end, we note that for small r̂ (Abramowitz & Stegun 1964, p. 360)

H
(1)
0 (r̂) ∼ 2i

π
(1− 1

4
r̂2) ln r̂ + (1− 1

4
r̂2) +

2i

π
+

2i

π
(ln 2 + γE − 1)(1− 1

4
r̂2) + · · · , (5.12)

with γE ≈ 0.5772 being Euler’s constant. Inserting (5.12) into (5.11) yields the small-r̂
asymptote of the pressure fluctuation in the acoustic region, while the asymptote of
the pressure in the upper deck as r̄ = (x̄2 + ȳ2)1/2 →∞ can be obtained by substituting
(5.5)–(5.7) into (5.1) and rewriting the resultant expression in terms of x̂ and ŷ. On
matching these two asymptotes, we find that

q11 = −πi(1 +M2)ω2P0

(1−M2)2
, q22 = − πiω2P0

(1−M2)2
, q12 = 0, (5.13)

d1 = −2πMω2P0

(1−M2)2
, d2 = 0. (5.14)

Inserting these constants into (5.11) and making use of the fact that H (1)
0 (r̂) ∼√

2/π r̂−1/2ei(r̂−π/4) for large r̂, we find that as r̂ →∞,

p̃ ∼ (Tw/T∞)1/2 ε4ωV̂s(0)

(1−M2)7/4

q(θ,M)

(Mωr†)1/2

× exp

{
i

(
Mω(1−M2 sin2 θ)1/2

1−M2
r† − Mω

1−M2
x† − π

4

)}
(5.15)

where the directivity function q(θ,M) is given by

q(θ,M) =
(1−M2)1/4

(1−M2 sin2 θ)1/4

[
1− M cos θ

(1−M2 sin2 θ)1/2

]2

, (5.16)

with θ being the observation angle (see figure 1).
To facilitate the interpretation of the result (5.15), we introduce the coordinates

(xd, yd) normalized by d∗, as well as the time variable td normalized by d∗/U∞, where
d∗ is the width of the suction slot. Suppose that in terms of xd the suction velocity
is given by (vs(xd)e

iωdtd + c.c.), and the Fourier transform of vs(xd) with respect to xd
is v̂s(k), where ωd denotes the frequency normalized by U∞/d∗. Then the following
relations hold:

(x†, y†) = ε−2K−1(d∗/L)(xd, yd), ω = ε2K(d∗/L)−1ωd,

V̂s(0) = ε−6(Tw/T∞)−1/2K−1(d∗/L)̂vs(0).

After performing the above substitutions in (5.15), it can be shown that

p̃ ∼ ωdv̂s(0)

(1−M2)7/4

q(θ,M)

(Mωrd)1/2

× exp

{
i

(
Mωd(1−M2 sin2 θ)1/2

1−M2
rd − Mωd

1−M2
xd − π

4

)}
(5.17)

where rd = (x2
d + y2

d)
1/2.
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The final result (5.17) exhibits no explicit dependence on the profile of the mean
flow, nor on the wall friction or temperature. However it would be wrong to conclude
that the shear plays no role in the sound radiation. To see this point, let us consider
the purely inviscid model where the mean flow is replaced by a uniform stream. The
pressure p̃I is then governed by the equation

M2

(
−iωd +

∂

∂xd

)2

p̃I −
(
∂2

∂x2
d

+
∂2

∂y2
d

)
p̃I = 0, (5.18)

subject to the boundary condition

∂p̃I

∂yd
= −

(
−iωd +

∂

∂xd

)
vs(xd) at yd = 0. (5.19)

The system (5.18)–(5.19) can be easily solved by using the Fourier transform to obtain

p̃I =
i√
2π

∫ ∞
−∞

(k − ωd)̂vs(k)
[k2 −M2(k − ωd)2]1/2

exp{ikxd − [k2 −M2(k − ωd)2]1/2yd} dk.

The above integral has a stationary phase point at

ks =
Mωd

1−M2

(
−M +

cos θ

(1−M2 sin2 θ)1/2

)
,

and the method of stationary phase shows that as rd = (x2
d + y2

d)
1/2 →∞,

p̃I ∼ ωdv̂s(ks)

(1−M2)7/4

q0(θ,M)

(Mωdrd)1/2

× exp

{
i

(
Mωd(1−M2 sin2 θ)1/2

1−M2
rd − Mωd

1−M2
xd − π

4

)}
, (5.20)

where

q0(θ,M) =
(1−M2)1/4

(1−M2 sin2 θ)1/4

[
1− M cos θ

(1−M2 sin2 θ)1/2

]
, (5.21)

and v̂s(ks) ≈ v̂s(0) since ωd = εωs.
It can seen that (5.17) and (5.20) have the same multiplicative factor, but the

directivity functions predicted by the triple-deck and inviscid models are different.
Such a difference is not totally surprising since the triple-deck structure, though fairly
insensitive to the detailed profile, requires the mean flow to vanish at the wall, a
property not possessed by a uniform flow.

In figure 4, we plot the directivity (5.16) at three Mach numbers. Interestingly, the
emission is beamed to the upstream direction. Such a feature is also predicted by
the purely inviscid solution (5.21), but is much less significant than that shown in
figure 4.

6. Conclusions and discussions
By analysing a relatively simple flow, namely a subsonic boundary layer subject

to unsteady suction, we have demonstrated an asymptotic procedure for determining
the acoustic field of an unsteady triple-deck flow. In this approach, the source and
the sound can be calculated in a systematic way. Another aspect considered is the
generation of instability waves, i.e. the receptivity problem. The amplitudes of these
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Figure 4. The directivity of the acoustic far field.

waves are fully determined, and their presence does not cause indeterminacy. The
radiation and receptivity are two processes taking place simultaneously, both of which
have been adequately described by the present approach.

It is well known that Lilley’s equation may admit eigensolutions corresponding
to instability waves, a feature that sometimes has been held against Lilley’s analogy
(see e.g. Howe 1975; Ffowcs Williams 1977). Some authors choose to suppress the
instability waves in favour of a bounded solution. Such a treatment violates strict
causality, but does not affect the acoustic field in the case of doubly infinite vortex
sheet (Mani 1976; Dowling et al. 1978), since the homogeneity in the streamwise
direction means that the Kelvin–Helmholtz instability waves are nowhere coupled to
the sound. However, in the more complex situation where some form of discontinuity
(e.g. an edge) is present, it is recognized that instability waves may be a significant
source of sound. An arbitrary prescription of the instability waves downstream
the edge without considering the external perturbations may result in misleading
prediction of the sound radiation (cf. Crighton 1972a; Howe 1976). Unfortunately,
the determination of the instability waves can be difficult within the context of pure
acoustic analogy, because some vital hydrodynamic aspects of the problem are not
always contained in the acoustic tensor. To resolve fully the receptivity, one has to
go beyond the framework of acoustic analogy.

The method presented in this paper can be used to solve a range of problems
where the acoustic sources are associated with triple-deck flows. For example, since
T–S waves are described by triple-deck structure, our approach can immediately be
used to analyse the acoustic radiation as an oncoming T–S wave interacts with some
form of rapidly varying mean flow (caused e.g. by a local roughness element). This
is being currently pursued, but the most important application that we have in mind
is to the trailing-edge noise, for which various theories have been proposed (see
Howe 1978). In particular, it has been suggested that the turbulence in the boundary
layer, when passing the edge, may be diffracted into sound. Such a process was
first investigated by Ffowcs Williams & Hall (1970), who solved Lighthill’s acoustic
analogy equation for the case of a half-plane immersed in a turbulent flow. The
source was represented by Lighthill’s quadrupoles, and the mean flow was absent.
Howe (1976) developed a theory in which the turbulence is represented by a convected
line vortex (or gust), and the shear layer by a semi-infinite vortex sheet. Remarkably,
his analysis shows that if the Kutta condition is imposed and the vortex moves with
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the free-stream velocity, the sound generated by the gust cancels the sound produced
by shed vorticity in the wake, with the consequence that there is no net sound being
emitted. Howe then suggests that any edge sound must be produced due to some
nonlinear effects. There is however another possibility: that is, near the trailing edge
the mean flow is rapidly varying and is governed by triple-deck theory. Turbulence
may interact with this flow to produce sound. Another source of trailing-edge noise
is the diffraction of the oncoming T–S waves, as has been suggested by experimental
evidence (e.g. Arbey & Bataille 1983; Nash & Lowson 1999). Investigations thus
far still stay at the level of correlating the spectra of the sound field and instability
waves, and there has been no first-principle analysis aimed at direct calculation of
the sound. This process certainly cannot be modelled by a semi-infinite vortex sheet
because the uniform stream over the plate supports no instability waves, although
Kelvin–Helmholtz instability waves develop on the vortex sheet. To take account of
the oncoming T–S waves that develop in the upstream boundary layer, the local
triple-deck flow has to be an important part of the model. It appears to us that the
approach developed in the present work may provide a basic framework for tackling
the above two problems.

Finally it may be worth pointing out that while the relevance of triple-deck theory
to aeroacoustics is well known (e.g. Crighton 1985; Peake 1994), its role so far has
been limited to providing a justification for imposing the Kutta condition on inviscid
solutions. The present work seems to be the first that integrates the triple-deck
structure into an overall scheme for predicting the sound radiation.

The author would like to thank Professors J. T. Stuart, D. W. Moore, F. G.
Leppington, H. Zhou and M. Gaster, and Dr S. J. Cowley for helpful discussions
and comments. The referees are thanked for their detailed comments and suggestions,
which have led to improvement of the work.

Appendix. Definitions of integrals

I1 =

∫ ∞
0

(RBUB − 1) dỹ, (A 1)

I2 =

∫ ∞
0

(RBU
2
B − 1) dỹ, (A 2)

J0 = ãM2 −
∫ ã

0

(
1

RBU
2
B

− Tw/T∞ 1

λ2ỹ2

)
dỹ + Tw/T∞

1

λ2ã
, (A 3)

J∞ =

∫ ∞
ã

(
1

RBU
2
B

− 1

)
dỹ − (1−M2)ã ; (A 4)

H3 =

∫ ã

0

RBU
2
B

{∫ ỹ

ã

dỹ1

RBU
2
B

}
dỹ +

{∫ ∞
ã

(
1

RBU
2
B

− 1

)
dỹ

}{∫ ∞
ã

(RBU
2
B − 1) dỹ − ã

}
+

∫ ∞
ã

(RBU
2
B − 1)(ỹ − ã) dỹ −

∫ ∞
ã

RBU
2
B

{∫ ∞
ỹ

(
1

RBU
2
B

− 1

)
dỹ1

}
dỹ + 1

2
ã2

−M2

∫ ∞
0

(RBU
2
B − 1)(ỹ − ã) dỹ, (A 5)
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H5 =

∫ ∞
0

(
1

RBU
2
B

− 1

){∫ ỹ

0

RBU
2
B dỹ1

}
dỹ − (1−M2)

∫ ∞
0

ỹ(RBU
2
B − 1) dỹ, (A 6)

H∞6 = 2

∫ ∞
ã

(
1

RBU
3
B

− 1

)
dỹ −

∫ ∞
ã

(
1

RBU
2
B

− 1

)
dỹ − (1 +M2)ã, (A 7)

H0
6 = −2

∫ ã

0

(
1

U3
B

− Tw/T∞ 1

λ3ỹ3
+

(γ − 1)M2

λỹ

)
dỹ

+Tw/T∞
1

λ3ã2
+

(γ − 1)M2

λ
(2 ln ã− 4

3
). (A 8)

In all the expressions above, the parameter ã is arbitrary provided ã 6= 0. Since
the Blasius profile UB is a function of the similarity variable η ∼ (1 + x)−1/2, it is
convenient, when evaluating these integrals, to choose ã = a0(1 + x)1/2 with a0 being
independent of x.
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